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[57] ABSTRACT

A system for generating three-dimensional objects by
creating a cross-sectional pattern of the object to be
formed at a selected surface of a fluid medium capable
of altering its physical state in response to appropriate
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bombardment or chemical reaction, successive adjacent
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laminar buildup of the desired object, whereby a three-
dimensional object is formed and drawn from a substan-

tially planar surface of the fluid medium during the
forming process.
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Digital materials for digital printing

George A. Popescu (MIT, Center for Bits and Afamsl, Tushar Mahale (North Carolina State University), Nell Gershenfald (MIT Center

for Bits and Alows).

Abstract

Cemiventiopal  three-digiensiong]  pranting  processes g
minigral-deperndent,  ond e irreverable,  We o present an
afternative approgol ased o threedimensional assembly of
st s-prodivced we-dimenatonal compoierts af aighial moterial,
Thiv signifivantdy enloeges e avaloble materiol el allowy
reversible disossembly, and fmposes constnnds fud vedice the
geewmlanon of feeal pogiioning envors e consrrenng a plobal
alrgpe. Experimental work on moderial progenies and dimensional
sealtieg of the digiae! sederiod wil be prevenred, with appfication
i asverndding fenchione! siruciares, We propose that assenbiing
digitel mterial will be rthe finre of 3-divensional free-foivi
Serkeraventive eof Fanicioan! evieriely.

Mot existing commercial free-lomm fubsicution prinfers baild
by puttina topether small quantitics of no more than o fow
expensive marerials In order to make high-resolution objects they
need o be wery procisc and thescfore cost between tens and
Bipsbreds of thoesands of dollass and are operated By skillal
technicians. On the other hand young children build 3dimensional
sirctures ol ol EEGCY sath thenr hands. LEGOY sfrochimes @
cheap, gquick and easy o muke, reversible and most importintly
they are more precise than the Kids who baild them, However, they
arc big amd ae only made out of ABS plastic. We belicve that
digital materials bring reversibility, sinaplicity, low cost and speoed
tor frce Toam Galwication in addition v a larger matenal et

Frevicas reseanch on simichimes bl sad of many discreie
parts involved self assembly [1], error comection self assembly [2],
prozramimahle self-assembly 2] omd ldiogl4)l We rely on
digitnl primter, as presented in [5] wdhich will assembie the structure
by puckiang and plocing the bricks forming the digitnl material,

W define o digital meaterial as a discrete sct of componcnts
that can be of any sizes and shape, rmade oul of various matenals
aned Ut e B gzt i viaross wis (press D1 frcion i, swap
tit, retlew binding, etc.b. Howewver the coraponents of o digitnl
matzrial winst warisfy the following propertics which are familiar @
meany ey nssemblv kits!

1, All components can be decomposed o stealler elementary
peoimetricel shapes.

2. Twa componenis can Torm o finite mosber of links,

3. The links bebwen two components sre reversihle,

Figure 1 4 drawing (a) and a 30 modef (b} of a squanes GIK part.
A square GIK (s made ouf of 21 cubes amang which § have
clranders, Many oiley geomelriea (ilangle, mchamgles, .. | &
possibie.

fal (&

(el

Figure 2 GIK eructres of differenl sizes & shapes: (a) maler (in
plyweood) , (b centimeder (plywoed), (o) milimetar [cedufoid) , ol pm
{Keptor) You can see the mm and cm scale shrucfves sice by side
ol The wm shracieee §s on dop of 8 dime for soxle puvposes.

Flgure 3 G parfs made owl of different matesial: plywood,
Rlaeigias, suminem and fiberglass composite mafenal, sfainioss
sieel, transparenicy [calfufoid) ang cardBbased,

OIS as described in ligure | s as an example of dignal
mderial, CGIK bricks Deee Fre, 1, 2, 33 ean be cob in 2-dimsensions
which makes them very epsy b0 make st any scale (Fig. 2} They
can tee press il together o fomn space Otling voxels thal con be
connocted  and disconnecicd at will making the construction
reversihle. Inaddition, a8 seen in Fig, 3 they can be mide omr of a
vienely of msterialy, Bebow eye nesolation OTK parts (Dpme ad
grabler) will have moacro-scale bebavier hue will form high
resclutun uhpecls which wall seem continuous, GIHS bulding
blocks can be compored 1o on atom that mesembles o form o

" GIK. inivally Grace's Invention Kivalter s mventor
Grace Gershenfeld, became the Grear Invention Kit after Eli
Giershenfeld contributed, than simplhy (K.

DF 2006 International Conference on Digital Fabrication Technologies,
Denver, Colorado (2006)

Digital Printing of Digital Materials

Gearge 4. Papescd (MIT Center for Bits and Atorms), Palrik KenzlarMIT Center for Bits and Afama), Ned Gersfianfeld (MIT

Canler for Bils and Afoms).

We presemt o printer thet Tnllds focttomsd thre-dimensionn!
Seuctaves By eeversibile arsembly of a diserele ser of compores,
“igiral morerials". This appreach wses the components rather than o
caaptrod svstemd (o dmpoxe e spatind and fanetlonad consrraings,
Printing can be performed as g pavallel rather than a livear process.
The pn'ir]l.rrg Jrrces s f1 mevEradde ﬁu‘ Fie-ye rr,lIl Her f‘u'ﬁ'n'.'i' .r.lr_,l':u.r' ernRr
crrricibon il ey I:Il'hl.l'lf T 1’.\&.;1‘:’]‘.".'.‘ .I'.|_|'4'z'. iy deleciion,  sirne
vedliwction and ervor-olerance  diering assemllfy allows for peliable,
M gh tieraeglipid priniing. We ane preseniing developmend approclies
te it @ printing device. )

The paper “Tigial matenal Tor degital prnting” [ 1] presents a
digitnl material that can b wed o 3D print functional free-form
atrchies. In the present pager we e descoibing dhe  techiical
architeciure of a possible printer that can do the assembly, While this
asmembler will be desgned o use vertical GIK, 3 serion of digital
materral sinpbar go GTE (1], one should be ahle momadily in o assemble
my digital material. Vericol GIK | as presested in figure L. has the
siane propertizs as GIK. s fooming the seme pres Gt ioks o GIK, bt
can only b assembled vertically, Therefore o vemical GIE structure is
Forriied (o= show an Ggire 1) by rotanibg each laver in nesped 1o e
bt oo by S0 cleprees inorder o brace two lines ogether,

Because the present muachine will assemible a digital marerial which
1% error<olerant amd ermor-reducing, it merodogy wall be very simphe.
A shown in figures D and 2, in onder to assembie o GIK stuctuee the
assomibler oaly has to press the parts together vertically, It is therefore a
2.5 uxes meembler, Ws xand v precision has 1o be al wors the chamifer
dimension & (as prescmcd in [1]. The chamifor size k being pvpically
about LD of the sive of o verical GIK hrick the printer needs g 2-v
precision of about | micrometer iix order to assemble 20 miceometer big
vertical GIE.

Ascshown in figure 3, the assembler will use Blank parts o crente
everhangs or as place holders. The Blank pans are unable 1o create
links with GIK pars but ane the same dimension a5 a GIK port, Onee
the structuge will be built one can discard the Blanks pars by shaking
the fesulfing stuctine.

[F p R part is 200 micrometer g, im osder to boild o 190 cubic cm
structre one would need abour 100 hillion pars. In order o build sach

Figure | vertical Gik bricks forming an incamplate 2 layer vertical GIK
strncfure. One Gan nobice the B0 degree rotabion befwesn pers for bracing

@ sructure i -a reasonabie amount of g (1 day) the assembler has (o
ald ahout | omillion pars o second, This can only be done iF the
assembler is adding the | million parts simultaneously (in parallel).

Assembling Strategy

A GIK strugture is composed of layers of GIK. Each GLK luyer is
codiipesed  of GIE loes. The man bdea guiding the assembler’s
arclotecturd i thal the weembler 15 always addimg e o consant
length, one entire line at 2 time, However cach line is composed of GEK
ey b the posmitions where i = supposed ws add & CiTE o e droctiore
and of Blank pans otherwise This way the structure to be buili is

Figure I vertical GIK {gray) and Blank (wiite} parfs farming an overhang
structure, O can podice that Blank and vartical GIK ara tha same size amd
that Blank and verfical G dont farm any links.

Figure 3 Schematic ovarview of s digital assamblar. The digital as sembier
eonalsta of & suppart Hare wikieh Drevioes SUpeort for Mre Oral feper af vertical

GIK ard holds the ohfect fo be assembled, ane or more assembly aads
{polfowt, and 2 foeders for eect: boad, all of which are hold togedrer on a frame.

DF 2006 International Conference on Digital Fabrication Technologies,
Denver, Colorado (2006)
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ON THE DECREASE OF ENTROPY IN A THERMODYNAMIC SYSTEM
BY THE INTERVENTION OF INTELLIGENT BEINGS

LEO SZILARD

Translated by Analol Rapoport and Mechthilde Knoller from the original article “Uber dic Entropiever.
minderung in einem (hermodynamischen System bei Eingriffen intelligenter Wesen.”" Zeitschrifl fiir

Physik, 1928, 53, 840-858.
ces

The objective of the investigation is to
find the conditions which apparently allow
the construction of & perpetual-motion ma-
chine of the second kind, if one permits an
intelligent being to intervene in a thermo-
dynamic system. When such beings make
measurements, they make the system behave
in a manner distinctly different from the way
# mechanical system behaves when left to
itself. We show that it is a sort of 2 memory
faculty, manifested by a system where
measurements occur, that might cause a
permanent decrease of entropy and thus a
violation of the Second Law of Thermody-
namics, were it not for the fact that the
measurements themselves are necessarily
accompanied by a produetion of entropy. At

G Sl

entropy in connection with the measure.
ment, therefore, need not be greater than
Equation (1) requires.

[ ]

HERE is an objection, already historical,

against the universal validity of the
Second Law of Thermodynamics, whieh in
deed looks rather ominous. The objection is
embodied in the notion of Maxwell's demon,
who in a different form appear: «ven nown
days again and again; perhap=s not unreason
ably, inasmuch as behind the precmely
formulated question quantitative connee
tions seem to be hidden which to date have
not been clarified. The objection in its origl
nal formulation concerns a demon who
catches the fast molecules and lets the slow

T
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A SYMBOLIC ANALYSIS
oF
RELAY AMD SWITCHING CIRCUITS

oy

Claude Elwood Shannon
B.8., University of lLiicnigan
1955

Submittea in Partial Fulfillment of the
Requirements for the Degree of
KASTER OF 8CIEICE
from the

Massacnusetts Institute of Technology
1940
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COMMUNICATION
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Lectures on

PROBABILISTIC LOGICS AND THE SYNTHESIS OF RELIABLE

ORGANISMS FROM UNRELIABLE COMPONENTS

delivered by

PROFESSOR J. von NEUMANN
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Digital Revolutions

analog — digital communication
~1945

:

analog — digital computation
~1955

\

~2005




Vol 457119 February 2009/d0i10.1038/nature07749 namre

A hierarchical model for evolution of
23S ribosomal RNA

Konstantin Bokov' & Sergey V. Steinberg'

The emergence of the ribosome constituted a pivotal step in the evolution of life. This event happened nearly four billion
years ago, and any traces of early stages of ribosome evolution are generally thought to have completely eroded away.

Surprisingly, a detailed analysis of the structure of the modern ribosome reveals aconcerted and modular scheme of its early
evolution.
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POPFAB

POPFAB

the portable fabrication multi-tool
designed and bult by Man Moyer & Radya Peek

withthe BITCADLab
MIT Center for Bits and Atsems

in collabaration with The L#tle Devices Lab & MIT
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The Othermill: Custom Circuits at Your Fingertips

by Otherlab

Home  Updates f  Backers I}  Comments ET)
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f share 1 W Twend

An easy to use, affordable, computer controlled mill. Take
all your DIY projects further with custom circuits and
precision machining.

At Otherfab, we am interasiad in portable, accessible, computer-controlled machines,
and how they can help us design our wordd. With the ability fo make custom circulbry, we
can now build our own smard objects - medicine belles thal email reminders, shoes that
tell you how fast you wenl, and even glasses thal know when you need to pul on
sunscreen, The Othemmill is ouwr contribution o custom creuil design and the desklop
manufaclenng revolution.
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FORM 1: An affordable, professional 3D printer

by Formiabs

@ Combridge, MA  F Technology

o
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+ Share 701 W Twael €3 Embed

An affordable, high-resolution 3D printer for professional
creators.

Thanks for an amazing Kickstarter campaign! The
next chapter of 3D printing is just beginning.

Pre-order your Form 1 at Formlabs.com
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Design and analysis of digital materials o ssase sgiai mater civs
for physical 3D voxel printing

Fonathan Hiller and Hod Lipson
Comell Computational Synthesis Lab, Comell University, Ithaca, New York, USA

Figure 1 The principle of a digital manufacturing process, using spherical voxels

Digital Congrol

Material |

Hapad Prototyping jowmnal
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modulus E (GPa)

Ultra-Light Materials Modulus Scaling with Density

1000
© uni-directional aligned CFRP solid
¢ directional aligned CFRP cuboct digital composite
100 - O quasi-isotropic CFRP solid o
® quasi-isotropic CFRP cuboct digital composite o
0 - A acrylic solid
A acrylic cuboct lattice
x N1P micro-lattice (17)
| 4 X graphene cork (19) A
+ silica aerogel composite (14)
0.1 -
#
i ¢ © +
0.01 X * B
0.001 A
' KK
xkx
X
0.0001 - W
X
XX
0.00001 - -
X
X X
0.000001 - &
X oy
0.0000001 X . [ .
0.0001 0.001 0.01 0.1 |

density p (g/cm?)
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Hierarchical Fabrication by Coded Folding
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Complex shapes self-assembled from

single-stranded DNA tiles
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Figure 1 | Self-assembly of molecular shapes using single-stranded tiles.

a, The canonical 55T motif, adapted from ref. 12. by Design of an 55T rectangle
structure, Lefl and middle owo different views of the same secondary structure
diagram. Each standard (full} tike has 42 bases (labelled U). and each top and
bestiom boundary § lalf) tile bas 21 bases (labelled L), Righit:a 1+i.|:|:|i:|fﬂ:||:'|.1 ‘Brick-
wall” dingrom_ Standard tiles are depicted as thick rectangles, boundary tiles are
depicted as thin redangles and the unstructured single-stranded portions of the
boundary tiles are depicted as rounded comers. Each strand has a unigue
sequence, Colours distinguish domains in the left panel and distinguish strands

in the middle and right panels. ¢, Selecting an appropriate subset of S5T species
from the commaon pool in'b makes it possible 1o design o desirad target shape,
for example a triangle (left) ora rectangular ring (right). J. Design of a tube with
prescribed width and length. e, Arbitrary shapes can be desigmed by selecting an
.'III'F'“IF!‘!L'I! esel o manoncrs from a FEI 1."‘-!- t”..l'l L"."h::ll.!'.'l.l I"EHII Il:t.ll CinT [l':‘hF:IIH:II.!h {5 35|
modecular canvas (top right ). To make a shape, the 58T strands corresponding
ta its constitvent pixels (dark blue) will be mcluded in the strand mixture and
the remainder (light blue) will be exchuded.
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Figure 4 Complex shapes designed using a molecular canvas, AFM images
of 100 distinct shapes, including the 26 capital letters of the Latin alphabet,
10 Arabic numerals, 23 punctuation marks and other standard keyboard
symbols, 10 emoticons, 9 astrological symbols, 6 Chinese characters and
various miscellaneous symbaols. Each image is 150 nm X 150 nm in size.
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(Charles Fracchia)
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8:00-9:00 Registration (E14-638) 2:00-3:30 Briefings: Policy and Programs (E14-674)
OSTP: Philip Rubin (video)

9:00-10:30 Briefings: Materials and Mechanisms (E14-674) NIST: John Slofwinski

Introduction: Neil Gershen DARPA: Paul Eremenko

History: 55;,;{%%@?{1 . NSF: Richard Voyles

Fabricational Complexity: Joe Jacobson NAS{E\: LaNetra Tate

Digital Materials: Kenny Cheung DOE: Kelly Visconti

Self-Assembly: Ned Seeman DHS: Jose Vazquez

Nano-assembly: Peng Yin Make: Dale Dougherty 1
Micro-assembly: Will Langford MacArthur Fqundahnn: Connie Yowell
Meso-assembly: Hod Lipson Barcelona: Vicente Guallart
Macro-assembly: Skylar Tibbits Rep. Bill Foster

MR asnarmN: CATY SARS 3:30-4:15 Working Groups (E14-638,648)

10:30-11:00 Break (E14-638) Policy, Programs: Tom Kalil (video)

11:00-12:30 Briefings: Processes and Workflows (E14-674) Standards, Formats: Hod Lipson
Facilities, Infrastructure: Jim Newton
Simulation and Optimization: Wojciech Matusik Communication, Publication: Joe Jacobson
3D Scanning: Philip Withers Education, Outreach: Shery Lassiter
Design Representations and Interfaces: Matthew Keeter
Path Planning: Sanjay Sarma 4:30-5:00 Discussion (E14-674)

Motion Control: Nadya Peek

Printing: Jennifer Lewis 2:00-6:30 Reception: Exhibition (E14-638.648)

Folding: Erik Demaine — | :
Programmable Matter: Daniela Rus 6:30-8:00 Goldstein Lecture (10-250)
Lltle Data: Seorge Chumh The Design of Robotic Fabricated Architecture: Matthias Kohler

Self-Reproducing Systems: John Glass

12:30-2:00 Lunch: Demonstrations (E14-638.648)
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