

Printing Functional Materials

Jennifer A. Lewis

School of Engineering and Applied Sciences
Wyss Institute for Biologically Inspired Engineering

Harvard University

NSF Additive Manufacturing Workshop – 07.11.13

3D Printing – Design, Print, Innovate

Broad range of commercial printers and solidification schemes (photocuring, ΔT , laser sintering, drying, etc.)

Stereolithography 3D Systems

Laser Sintering 3D Systems

Fused Deposition Stratasys

PolyJet Process
Objet

3D Printing Z Corp

Robocasting Enterprises

Laser Net Shaping
Optomec

Electron Beam Melting
Arcam

3D Printing – Design, Print, Innovate

Broad range of commercial printers and solidification schemes (photocuring, ΔT , laser sintering, drying, etc.)

Stereolithography 3D Systems

Laser Sintering 3D Systems

Fused Deposition Stratasys

PolyJet Process
Objet

Most 3D printing methods lack one or more of the following attributes:

- (1) Materials flexibility
- (2) Ability to pattern fine features (< 100 μ m)
- (3) High throughput

Several advances needed for 3D printing of high performance, functional materials

"Before this personal manufacturing revolution can take place, though, researchers will need to develop a broader array of robust printing materials..."

"... rapidly growing market, \$1 B sales... about 70% of market is prototyping"

Chemical & Engineering News, Nov 14, 2011 issue

Our research focus

- Broaden materials palette for 3DP
- Integration of multiple materials
- Digitally specify form and function
- Improve feature resolution by 100x
- > Improve throughput by 100x

... expedite transformation from rapid prototyping to manufacturing of functional materials

Custom stages designed for 3D printing

 $10x10x5 \text{ cm}^3 \pm 50 \text{ nm}$ V = 0.1 -10 mm/s

 $1m^2x10 \text{ cm } \pm 5 \mu\text{m}$ V = 1 -1000 mm/s

High precision, large area, and high speed stages

+ integrating multiple 3D printheads

Printing ink filaments (in and out of plane)

Desired Ink Rheology:

- Shear thinning behavior facilitates flow through fine nozzles without clogging
- Viscoelastic behavior enables printing of self-supporting (spanning) features

Viscoelastic inks designed for 3D printing

Ink design and deposition

- ink must flow through nozzle without jamming
- ink filaments must form high integrity interfaces
- ink must solidify rapidly (via gelation, coagulation, or evaporation)
- · concentrated inks minimize shrinkage during drying

Reactive silver inks for integrated electronics

Silver particle inks for integrated electronics

Starting Materials

Silver source : AgNO₃

Stabilizer: Poly(acrylic acid), PAA

Reductant: Diethanolamine, DEA

Solvent: Deionized H2O

Silver particle inks for printed electronics

Silver inks are highly conductive as-printed

Solar panels - present design

Rigid, costly, active materials* occupy large area

*silicon PV cells and silver interconnects

Printing High Aspect Ratio Silver Microelectrodes

Ahn, Duoss, Nuzzo, Rogers, Lewis et al. *Science* (2009). Ahn, Duoss, and Lewis, US-Patent 7,922,939

Flexible photovoltaics

Example:
Si microcells +
Luminescent layer
(UV-curable and organic dye)

Vast reduction in active materials used

Printable microcells & interconnects combined with concentrator optics

Rogers, Nuzzo,et al, *Nature Comm.* (2011).

Printing interconnects and bus bars

Sparse array of PV cells; finer interconnects

Flexible concentrator photovoltaics

Printed interconnects are highly flexible and can withstand repeated bending (1000's cycles) without performance loss

Printed interconnects exhibit excellent I-V response

Conformal printing of electrically small antennas

with Bernhard group (ECE @ Illinois)

$$k = \frac{2\pi}{\lambda_0}$$

ka < 0.5 indicates an electrically small antenna (ESA) i.e., $a < \lambda_o/4\pi$

Performance characteristics

VSWR: a measure of signal reflected at component junctions Ideally, VSWR = 1 (no reflected power, no mismatch loss)

Embedded Electronics (carbon ink printed in polymer matrix)

400 μm nozzle

After encapsulation

200 μm nozzle

Muth

Kolesky

Embedded Electronics (carbon ink printed in polymer matrix)

Strain Gage Length = 20 mm

All printed sequentially in 1mm thick EcoFlex reservoir

3D Printed of Strain Gage Arrays

Printed Three-Layer Stretchable Sensors

with the Wood group

Aim: Print Microbatteries w/ High Power & Energy Density

For autonomous devices that:

- 1. Harvest energy
 - photovoltaic
 - thermoelectric
 - piezoelectric...

2. Store energy

 micro-batteries w/ high energy and power density

3. Perform function

- Mechanical
- Sensing
- RF

Our goal:

Print 1 mm³ 3D microbatteries

i.e., size of a single grain of sand (!)

Lai et al., Adv. Mater. 2010

Warneke et al., Computer 2001

Key Factors Influencing Power & Energy Density

1. Materials Design

- High output voltage through design of the two half electrode reactions
- High ion diffusion coefficients (H⁺, Li⁺ in host materials)
- New light-weight host materials
- Fast reaction kinetics

2. Structure Design

- 3D electrode architecture
- Large surface area
- Thin film of active materials

REDUCE TRANSPORT LENGTHS

Wei

Our Focus: 3D interdigitated microbatteries

Printing 3D Interdigitated Microbatteries

Ink Viscosity and Elastic Modulus

Printing High Aspect Ratio Structures

Printed 3D Interdigitated Microbattery

Printed and Packaged 3D Microbattery

LFP-LTO Full Cell Properties

Microbattery Performance

Ref 34: Chiang (MIT)

(-) Lid

Li anode

Separator

LiCoO₂
monolith

Carbon binder

3D-IMA (Lewis, Dillon)

Ref 37: Braun, King (UIUC)

areal densities | 1st gen printed batteries exhibit exceptional performance!

High throughput 3D printing

Multinozzle design based on Murray's law:

$$r_{parent}^3 = \sum r_{branch_generation}^3$$

Hierarchical branching network Created by CNC milling

All 64 nozzles are 205±3 µm on a side

High throughput printing of 3D architectures

Large-area (1 m²) 3D structures printed in minutes using multinozzle printheads

8-nozzle array

Summary

- Created model and functional inks with controlled flow behavior
- Printed flexible electronics, photovoltaics, and sensors from conductive inks
- Printed 3D Li-ion microbatteries
- Implemented new multimaterial 3D printing
- Designed and implemented microvascular nozzle arrays for high throughput printing

expediting transformation from rapid prototyping to manufacturing of advanced materials

Thank you!

