Powder Bed Fusion Additive Manufacturing

Prof. Dr. Ir. Jean-Pierre Kruth KU Leuven university, Belgium

Introducing KU Leuven university

- Located 20 km East of Brussels, Belgium
- Founded anno 1425 as oldest catholic university
- 1970: split between KU Leuven and UCLouvain
- KU Leuven = largest university in Belgium (>30.000 student)
- Long tradition in manufacturing
 - CIRP Intern. Academy for Production Eng.
 - SME Univ. LEAD award (1998)

- Company: Materialise N.V., Leuven
- Initial activity: producing prototypes in plastics by layerwise Rapid Prototyping techniques
- Spin-off of KU Leuven (Division PMA)
- Start: 1990 (Founder: W. Vancraen)
- Today:
 - Largest RP or AM service bureau
 (>85 RP/AM machines in one location; >300.000 parts/year in 2011)
 - Largest RP/AM software developer a world
- From 2 to 1000 persons (2011: Materialise Dental splits off)

1995: Mammoth Stereolithography machine (build capacity 2200 x 840 x 800mm)

Softwares

Magics
(RP, RM, supports, ERP, e-software,...)

3-matic (facetted CAD)

Mimics (medical)

SurgiCase (surgery planning)

RSM (hearing aids)

Etc.

- Company: LayerWise N.V., Leuven
- Field: RP & AM of metalic products
- Spin-off of KU Leuven (Division PMA)
- Start: 2008 (Founders: P. Mercelis, J. Van Vaerenbergh)
- Today: 45 persons
- Production: > 20,000 metallic parts/year (2011)
- Activities:
 - Industrial, medical & dental applications (also artwork)
 - Several patents (dental and others)

- Company: Metris N.V., Leuven (since 2009 Nikon Metrology Europe N.V.)
- Spin-off of KU Leuven (Division PMA)
- Start: 1995 (Founders: B. Van Coppenolle, L. De Jonge)
- Today: 1000 persons
- Activities: (Reverse engineering), 3D coordinate metrology & quality control
 - 3D CMM, laser scanning probes
 - X-ray CT for measuring internal & external geometry (tolerances) and material quality (e.g. porosity)

Materials and Processing Issues in Powder Bed Fusion Additive Manufacturing

Prof. Dr. Ir. Jean-Pierre Kruth KU Leuven university, Belgium

Laser powder-bed fusion AM: SLS, SLM, ...

Classification of binding mechanisms

Main binding mechanisms for polymers

Polymers

Main binding mechanisms for metals

Metals

Main binding mechanisms for ceramics

Ceramics

Main binding mechanisms for composites

Composites (cermets and others)

Main binding mechanisms for polymers

Polymers

Main distinction in SLS of polymers

Mainly thermoplastics:

- (Semi-)crystalline
- Amorphous

Main SLS consolidation:

Partial or full melting

TEMPERATURE

Main distinction in SLS of polymers

Mainly thermoplastics:

- (Semi-)crystalline
- Amorphous

Main SLS consolidation:

Partial or full melting

Volume change (shrinkage):

Polymers

Main consolidation:

Partial or full melting

Major distinction:

- (Semi-)crystalline
- Amorphous

Differential Scanning Calorimetry (DSC)

DSC curve: melting & recristalisation peaks

DSC curve for PA12 (Differential Scanning Calorimetry)

Semi-crystalline polymers – DSC curves

Comparison of DSC curves:

- PA12 for SLS (PA 2200)
- PA12 milled
- POM milled

Source: University Erlangen

SLS of Semi-crystalline plastics (e.g. POM)

Transmission light microscopy images of microtome sections

PA (rough surface)

POM (smooth surface)

Source: University Erlangen

DSC curve: melting & recristalisation peaks

DSC curve for PA12 (Differential Scanning Calorimetry)

Polymers: types and applications

Polymer powder material	Application field	Example	Main properties	
Semi Crystalline Polymers e.g. PA-12	(Semi-)Rigid polymer parts		Long term useable	
Amorphous Polymer e.g. PS	Investment Casting Lost patterns		Accurate Partially porous	
Sacrificial Polymers used as binder e.g. PMMA	Metal or Ceramic Parts		Thermally degradable amorphous polymers	
Filled Semi Crystalline Polymers e.g. PA-GF, PA-Al, PA-Cu	Parts with special properties	1333 1333 1333 1333 1333 1333 1333 133	Long term useable Can withstand high loads	
Elastomeric Polymers e.g. Polyester	Elastic parts		Long term useable	
Polymer-Polymer Blends	Emerging Extreme Applications			
Thermo-setting Polymers e.g. epoxy resin				

Polymers 1: Semi-crystalline (e.g. PA12)

Partial or full melting

Un-molten complete particle stuck to

Un-molten particle

Fully molten particle (no

Loose un-sintered PA-12 powder

Tensile break surface showing some air voids

Polymers 2: Amorphous (e.g. PS)

Partial melting

Low strength: only partial consolidation

Better accuracy: no sudden shrink (jump) when solidifying (crystalline shrink at T_m)

Loose un-sintered PS powder

Tensile break surface showing some air voids

Polymers 3: Debindable polymers (e.g. amorph. PMMA)

Partial melting / LPS

 Thermal debinding (depolymerisation) should occur in furnace at 350°-450°C, while not occurring during SLS

- Suited polymers: PMMA or MMA-BMA co-polymers, PA, PP
- May involve some cross-linkers (thermosetters)

Examples:

- Steel (RapidSteel, Laserform)
- AW glass ceramics (Dalgarno)

AW glass ceramic + MMA-BMA

Powder mixture

Green part (i.e. after SLS)

part

Brown part (i.e. after debinding & firing)

Polymers 4: Reinforced polymers (e.g. PA-GF)

Partial melting / LPS

Loose un-sintered **PA-Glass** powder

Tensile break surface showing some air voids

Polya mide + Glass beads

Loose un-sintered **PA-Al** powder (30% Al)

Tensile break surface showing some air voids

Polymers 4: Reinforced polymers (e.g. PA-Cu)

Partial melting / LPS

Injection mold made from Cu-filled Polyamide and Polypropylene molded parts (injected at 2.76 MPa and 230°C)

Polymers 4: Reinforced polymers (long fillers)

Polyamide (nylon) with elongated filler

Source: FHSG - Valspar

Property	DF-M*	3D PA	3D GF	3D AF
Tensile strength (MPa)	49.00	43.00	27.00	35.00
Tensigle elongation %	5.00%	14.00%	1.50%	1.50%
Tensigle Modulus (MPa)	5376	1586	4068	3960
HDT [1.82 Mpa]	165	95	134	137

Polymers 5: Elastomeric polymer (e.g. polyester)

Partial melting

Polyester-based elastomer

Green part (i.e. after SLS and without infiltration)

Part after infiltration with polyurethane

Polymers 6: Others (polymer blends, thermosets)

Polymeric blends: Partial melting

- Multiphase materials → tuned microstructure!
- Example 1: mixed PA HDPE (80/20, 50/50, 20/80 wt%)
- Example 2: polymer 1 coated with low melting (thermoplastic) polymer 2 (T_m<70°C, e.g. polyvinyl acetal, heptadecanoic acid,...)

Thermosetting materials: Chemical binding

- E.g. mixture epoxy-iron
- Hydrogen bounds between polar O⁻ from resin and H⁺ on iron surface

Polymers: Conclusion

- Different classes of polymers covered
 - Semi-crystalline
 - Amorphous
 - Debindable
 - Filled polymers
 - Elastomeric
 - Polymer-polymer blends
 - Thermosetting
- Scope of applicable polymers still limited
 - Still mainly PA (plain or filled)
- Good, but no extreme properties

a Windform PROBb DuraForm GFc DuraForm Ex

d DuraForm Flex e SOMOS 201

f DuraForm Flex infiltrated

Metals

Metals

Metals 1: Liquid Phase Sintering (different materials)

Metals 2: LPS / Partial melting (no distinct materials)

Metals 3: Full Melting (e.g. Titanium)

Metals 3: Full Melting (e.g. Titanium)

Binding mechanism classification

2. Liquid Phase Sintering Partial Melting

4%

Ti6AlV4	SLM		Bulk annealed
Density [kg/m ³]	4415	\approx	4430
Hardness [Vickers]	405	>	350
Yields strength [MPA]	1125	^	1035
UTS [MPa]	1250	>	1035
Elongation [%]	6	<	11
E modulus [GPa]	94	<	114

Ti-6Al

Ti6Al4V

Metals 3: Full Melting (e.g. Fe alloys)

Metals 4: Chemical binding (e.g. Al, reinforced Cu)

Binding mechanism classification

1. Solid State Sintering

2. Liquid Phase Sintering Partial Melting

3. Full Melting

4. Chemically Induced Binding

Cu-based composite:

 $Cu + Ti + C \rightarrow TiC + heat for fusing Cu$

Mechanical properties of metals

()* Conventional material (not heat treated)

Alloy	Hardness	Charpy Impact	E-modulus	Tensile Strength	Elongation
Titanium alloy	410HV	11,5±0,5J	96GPa	1250MPa	6%
Ti6Al4V	(396HV)*	(21J)*	(114GPa)*	(1170MPa)*	(14%)
Stainless Steel 316L		59,2±3,9J (160J)*		719MPa (515MPa)*	51% (60%)
Maraging Steel	390HV	10,1±1,4J	163GPa	1290MPa	1,6%
18Ni300	(324HV)*	(18J)*	(180GPa)*	(1000MPa)*	(12%)*
Aluminium alloy	127HV		56GPa	396MPa	2,75%
AlSi10Mg	(86HV)*		(71GPa)*	(317MPa)*	(3,5%)*
Tool steel	760HV		110GPa	300MPa	0,35%
M2	(250HV)*		(150GPa)*	(750MPa)*	(15%)*
Tantalum (Cold Worked)*	207HV (200HV)*		168GPa (186Gpa)*	513MPa (900MPa)*	29%
Cobalt Chroom	392HV (477HV)*		169GPa (207GPa)*	963MPa (925MPa)*	20% (5%)*

Other materials: Ni alloys (Inconel, Hastelloy), Pure CP-Ti, β-Ti, Nitinol, W, ...

Mechanical properties: microstructure

Ti6AI4V CoCrMo Fine, needle-like martensitic α' Fine, cellular α-Co **HCP FCC** Elongated prior β grains in the Melt tracks clearly visible in Macro (side view) build both side and direction top view 500 µm

Mechanical properties – Heat treatments

Heat treatments after SLM of Ti6Al4V

	T [°C]	t [h]	Cooling Rate	E [GPa]	σ _v [MPa]	UTS [MPa]	ε _{failure} [%]
1	540	5	WQ	112.6 ±	1118 ± 39	1223 ± 52	5.36 ± 2.02
				30.2			
2	850	2	FC	114.7 ± 3.6	955 ± 6	1004 ± 6	12.84 ± 1.36
3	850	5	FC	112.0 ± 3.4	909 ± 24	965 ± 20	- (premature failure)
	1015	0.5	AC				
4		follow	ed by	114.9 ± 1.5	801 ± 20	874 ± 23	13.45 ± 1.18
۲	843	2	FC				
5	1020	2	FC	114.7 ± 0.9	760 ± 19	840 ± 27	14.06 ± 2.53
6	705	3	AC	114.6 ± 2.2	1026 ± 35	1082 ± 34	9.04 ± 2.03
	940	1	AC				
7		follow	ed by	115.5 ± 2.4	899 ± 27	948 ± 27	13.59 ± 0.32
	650	2	AC				
	1015	0.5	AC				<u> </u>
[8		follow	ed by	112.8 ± 2.9	822 ± 25	902 ± 19	12.74 ± 0.56
	730 O = water (2 Juanchine	AC L. AC = air cooling. F(= furnace cooling			

Treatment 6 to 8 are well known Ti6AL4V heat treatments [26].

Samples for treatment 3 were built in a different batch: building errors led to premature failure of components.

Traditional Ti-6-4 treatments

Mechanical properties – Toughness and fatigue

Ti6Al4V: ductility, toughness & fatigue (without thermal treatment)

Charpy V-notch: the roughness of SLM parts does NOT act as a stress

concentrator.

	SLM	Investment cast	Wrought
Charpy V-notch [J]	$11,5 \pm 0,5$	15-19	15-20

– Fracture toughness: (ongoing research)

	SLM	Cast	Wrought
K _{Ic} [MPa√(m)]	52	70-100	65-70

– Fatigue: (ongoing research)

(Unnotched, R=0 or 0,1)	SLM	Cast	Wrought
HCF limit [MPa]	>250	>200	>400

Crack growth rate

Ceramics

Ceramics

Binding mechanism classification

• Bismuth-germanate (Bi₄Ge₃O₁₂)

Ceramics: Classification

Major distinction:

Ceramic type	Main Consolidation type
Silicate ceramics	Liquid Phase Sintering
Multi-phase material made from clay,	Partial Melting
kaolin, silicate carriers (feldspar, soapstone) (+ Al ₂ O ₃ , ZrSiO ₄)	Full melting
Oxide ceramics	Solid State Sintering
90% single phase / single component	Partial Melting
metal oxides (Al-oxide, Mg-oxide, Zr-oxide, Al-titanate, Piezo-ceramic)	Full melting
Non-oxide ceramics	Chemical Induced Binding
Si and Al, with N or C	Partial Melting
Carbide ceramicsNitride ceramics	Full melting

Ceramics: Classification

Binding mechanism classification

Selective laser processing of ceramics (e.g. Al₂O₃)

- <u>Indirect</u> SLS of e.g. Al₂O₃ (partial melting of polym. binder)
- Densification strategies
 - infiltration of green/brown/final parts with highly loaded Al₂O₃ suspensions
 - isostatic pressing of green parts

Emblem statue of Brussels city

■ Final Al₂O₃ densities after applying densification strategies

- Carnauba wax: 75% => under investigation
- PS: 66% => 85%
- PA (ball milled): ... => 94% (bad geometrical accuracy)
- PA: 48% => 71%
- PP: 48% => 82%
 (bending strength: 96 MPa)

It's only the begining.
Further improvements are expected!!

Selective laser processing of ceramics (e.g. Al₂O₃)

* 97% with carnauba wax

Selective laser processing of ceramics (e.g. Al₂O₃)

Direct SLM of Al₂O₃ (full melting of ceramic itself, without polymer binder)

- DTM sinterstation 2000+
- v = 25 mm/s

Requirements:

- high packing density of sub micrometer particles (>50% Al₂O₃)
- preheating > 800°C
- no full melting

Experimental setup for direct SLS of Al₂O₃ under development...

Ceramics: SLS of ceramic slurries

Principle:

- Replacing dry powder by slurry with smaller ceramic particles (high green density)
- Additional "drying" step, before "laser sintering": capillary forces increase packing

Example (Univ. Clausthal):

- **Hydroxyapatite** + **H₂O** (up to 66% solid loading)
- $Al_2O_3/SiO_2 + H_2O$
 - binder free, highly loaded slurry+ drying + SLS
 - low melting SiO₂ + reaction sintering with Al₂O₃

Ceramics: Chemically and Self-induced binding

Principle:

• Induce chemical reaction that binds powder particles

Examples:

- SiC → disintegration SiC → Si + C
 Si + O₂ → SiO₂ binder for SiC
 - infiltration with Si + reaction bounded
- $CuO + Al \longrightarrow Al_2O_3 + Cu$
- Heat comes from laser + exothermal reaction
- Self propagation controlled by addition of Cu

• $Ti + Al \longrightarrow TiAl$

- Heat comes from laser + exothermal reaction
- Self propagation controlled by addition of TiAl
- Also tested: TiC-Al₂O₃ (mixture of TiO₂, Al and C; self-propagating), ZiSiO₄, MoSi₂

Investment casting shell and cast impeller

Composites

Composites

Binding mechanism classification

SLS/SLM well suited for all kind of composites:

- polymer-metal (e.g. PA-Cu, <u>PA-Al</u>)
- polymer-ceramic (e.g. PE-HA, PCL-HA, PS-Al₂0₃)
- polymer-glass (e.g. <u>PA-GF</u>) mixed coated (no agglomeration; uniform distribution)
- metal-metal (e.g. Fe-Cu) composite powder (uniform; no agglomeration; possible problems with fibers)
- metal-ceramic (e.g. WC-Co, Cu-TiC-TiB₂, Al₂0₃-Cu) Chemical binding from mixture of CuO and Al
 Liquid Phase Sintering Chemical binding from mixture of Cu, Ti and B₄C

Conclusion

- Laser powder-bed fusion is may be the most versatile AM technology
- It basically allows processing any material:
 - Polymers (semi-crystalline, amorphous, elastomeric, thermosetting)
 - Although 20 years old, still very limited pallet of polymers (few semi-crystalline polymers)
 - Even with PA11-12, **density needs improvement** (still 5...8% porosity)
 - Metal (ferro, non-ferro, reactive,...)
 - Pallet is increasing rapidly
 - Density mostly above 99 to 99.8% (even up to 99.95% for several materials)
 - Ceramics
 - Still under development
 - **OK** for porous parts (filters and scaffolds), but too low for structural parts (94..97%)
 - Composites (polymer-metal, polymer-ceramic, metal-ceramics, metal-metal, reinforced)
 - All kind of composites feasible (see above)
 - Technologically possible, but few industrial applications so far.

Further developments may take decades, but this was also the case for subtractive and forming processes that have been developed for centuries.

Laser powder-bed fusion AM: SLS, SLM, ...

Thank you for your attention

