Current Status and Future Perspectives of 3D Printing and Bioprinting for Regenerative Medicine

John P. Fisher
Fischell Family Distinguished Professor and Department Chair
Fischell Department of Bioengineering
University of Maryland

NSF Workshop on Additive Manufacturing for Health
Arlington VA

March 17 - 18, 2016
Biomaterials in Medicine

Historical Development of Biomaterials

Absorbable Sutures
- Bioactivity (1980’s)
 - Control reaction with physiological environment
 - Create materials to resorb into natural tissue

Bioinertness (1970’s)
- Minimal interaction with body
- Goal is no immune response

Regenerative Properties (2000’s)
- Interact with physiological system
- Stimulate specific cell response at molecular level
- Direct proliferation, differentiation, organization

Contact Lens

Vascular Grafts

Biomaterials in Medicine

Traditional Fabrication Strategies Remain Limited

- Fabrication approaches for controlling bulk geometry
 - Shaping
 - Molding
 - Fiber bonding
 - Layered fabrication
 Strategies provide only limited (~1 mm) control over scaffold geometry

- Fabrication approaches for controlling interior geometry
 - Porogen leaching
 - Phase separation
 - Freeze drying
 - Gas foaming
 - Electrospinning
 Strategies typically provide control over uniform geometry parameters (porosity, pore size, fiber size, interconnectivity), rather than location specific control
Tissue Engineering

Scaffolds

Cells

Signals

3D Printing & Bioprinting

- Controlled Scaffold Architecture
- Materials with Gradients, Complex Compositions
- Cell Patterning and Spatial Localization
- Protein Inclusion and Controlled Delivery
Common Fabrication Techniques

Strategy

- **Inkjet Bioprinting**
 - Available since the early 2000s, typically a low cost DIY for laboratories
 - Utilizes technology developed for printing on paper for bio-applications

- **Extrusion-Based Bioprinting**
 - More recent in development, but has been commercially available since the early 2000s
 - Typically driven via pneumatic pressure or a screw drive to extrude the material through a nozzle

- **Stereolithography (SLA)**
 - One of the oldest 3D printing technologies has been in use since the 1980s
 - Uses a light source (UV, visible, laser, or two-photon) for layer-by-layer curing of photocrosslinkable resins
3D Printing and Bioprinting Provides Clear Advantages in Biomaterial and Tissue Engineered Construct Fabrication

- Personalized Medicine
- Cell Patterning
- Standardized Materials
- Advanced Functionality
Personalized Medicine

3D Model Based on MRI/CT Images → Isolate Area of Interest → Design Custom Fit Graft → Fabricate Customized Graft
Cell and Biomaterial Patterning

Migration of Trophoblast Towards Growth Factors in Bioengineered Placenta Model

In Preparation.
Precise Manufacturing Capabilities

Modular Cylindrical Scaffolds Where Pore Size and Porosity are Determined by the Geometry of the Repeating Annulus /Column Unit

Advanced Biomaterial Functionalities

3D Printed Vascular Network

The Future of 3D Printing and Bioprinting – and the Widespread Clinical Translation of these Technologies – Will Require Considerable Technical Development
Stereolithography-Based 3DP Biomaterials

Material Choices and Resolution

- Some biocompatible and biodegradable materials used in SLA include
 - PLGA (PLLA/PGA)
 - PEG
 - PPF
 - ECM / Proteins

- Few light responsive components (photoinitiators and photoinhibitors) that are suitable for biological applications

There is a lack of SLA suitable materials that may be translated for tissue engineering and regenerative medicine applications

Chia HN, Wu BM. Journal of Biological Engineering 2015
Extrusion-Based 3DP Biomaterials

Material Choices and Resolution

- Shear thinning materials are often utilized due to the decrease in viscosity with increasing shear.

- However, viscosity and cell viability/function concerns persist.

- Examples of extrusion suitable, biocompatible materials:
 - Gelatin
 - Alginate
 - Ceramics
 - PCL
 - PLGA (PLLA/PGA)

There is a lack of extrusion suitable materials that may be translated for tissue engineering and regenerative medicine applications.

Murphy SV, and Atala A. Nat. Biotech 2014
Ozbolat IT, Hospodiuk M, Biomaterials 2016
Dababneh AB, Ozbolat IT, J Manufacturing Science and Engineering 2014
Bioprinting Often Needs Bioreactors

- Bioprinting allows for the simple fabrication of large, cell-laden constructs
- However, these cell laden constructs often require a dynamic environment for the efficient delivery of oxygen and nutrients, as well as the removal of carbon dioxide and waste

Bioreactor development needs to continue so as to provide a mechanism to support the viability and proliferation of these nutrient demanding cell constructs

3DP Bioreactors

Bioreactor Setup

Top: Bioreactor with 4 growth chambers
Bottom Left: CAD rendering of 3DP scaffold
Bottom Right: 3DP scaffold

In Preparation.
Manufacturing Standards

Effect of Printing on Material Properties

- The additive manufacturing approach provides immense flexibility in the ability to create diverse biomaterial with precise structures

- However, the additive manufacturing approach can lead to materials with anisotropic properties

The relationship between manufacturing approach and resulting material properties needs to be fully understood and characterized
Biomanufacturing Sites

Centers for Excellence in Printing Complex Tissues

- The establishment of hospital specific clinical printing centers has already begun nationwide

- However, the ability to support these facilities at each institution is unclear

- Further, the regulation – and standardization - of these facilities nationwide may be a considerable challenge

The establishment of regional centers of excellence in 3D printing and bioprinting may be a reasonable option for the efficient and widespread dissemination of these therapeutic technologies
3D Printing and Bioprinting in TE/RM

Summary

- 3D printing and bioprinting show incredible promise in tissue engineering

However, both technical hurdles and translational barriers must be overcome so that the promise of the technology can become clinical realities for a broad population of patients.
Acknowledgements

Tissue Engineering & Biomaterials Laboratory
- Current Lab Members
 - Navein Arumugasaamy
 - Hannah Baker
 - Laurie Bracaglia
 - Ting Guo
 - Vincent Kuo
 - Josephine Lembong
 - Max Lerman
 - Bao-Ngoc Nguyen
 - Charlotte Piard
 - Jesse Placone
 - Javier Rueda
 - Tara Talaie
 - Sarah Van Belleghem
- Lab Alumni
 - Owen Ball
 - Martha Betz
 - Emily Coates
 - Erin Falco
 - Kim Ferlin
 - Sathyya Janardhanan
 - Sachiko Kaihara
 - Kyobum Kim
 - Anthony Melchiorri
 - Jennifer Moreau
 - Minal Patel
 - Diana Yoon
 - Andrew Yeatts
 - Martha Wang

Our collaborators in This Work Include
- Dr. Anthony Atala, Wake Forest University
- Dr. Eric Brey, Illinois Institute of Technology
- Dr. John Caccamese, University of Maryland
- Dr. Yu Chen, University of Maryland
- Dr. Curt Civin, University of Maryland
- Dr. David Dean, Ohio State University
- Dr. Maureen Dreher, US Food and Drug Administration
- Dr. Antonios Mikos, Rice University
- Dr. James Yoo, Wake Forest University

Our Laboratory Acknowledges the Following Support
- Department of Defense (SBIR)
- Food and Drug Administration (CERSI)
- Maryland Stem Cell Research Fund
- National Science Foundation (CBET 1264517, CBET 1238398)
- National Institutes of Health (R01 AR061460, R01EB014946)
- Sheikh Zayed Institute, Children’s National Medical Center